Distributed QoS Control

Scott Jordan University of California, Irvine

New Ideas

New Ideas

- Build connections between characterizations of traffic flows, QoS requests, and network resource availability
- Negotiations between network and user agents regarding QoS
- Minimize information exchange using price & demand

Impact

Impact

- Reservation of network resources for each traffic flow or aggregates of flows in integrated service architectures
- Priority marking of packets in differentiated service architectures
- Automate resource management and QoS management tasks

Resource Allocation: User - Network Interface

Research Projects: Integrated Services

Research Projects: Differentiated Services

Pricing: Questions

Integrated Services	
reserve buffer and bandwidth along route	How much buffer and bandwidth should I reserve ??
	Depends on desired QoS and congestion !!
<u>Differentiated Services</u>	
label packets with traffic class	Which traffic class(es) should I use ??
00	Depends on desired QoS and congestion !!
11(_)	

Timeline

Optimal Allocation of Buffer

Current Research -- Optimal allocation of buffer vs. bandwidth

Current Research: Allocation of buffer

Large deviations theory:

Loss Probability
$$\approx \frac{1}{\sigma\theta\sqrt{2\pi N}}e^{-N(\sup_{\theta}[\theta(ct+b) - \log Ee^{\theta A(\theta,t))}])}$$

if both bandwidth and buffer are increased proportional to the number of sources!!

Morrison expresssion

Morrison expression for loss as a function of allocated buffer, bandwidth, and number of on/off sources:

Bandwidth vs. buffer

Express as a Taylor series in terms of bandwidth above average & number of sources

Buffer vs. bandwidth at a fixed overflow probability:

Optimal combination

Minimize total cost if buffer and bandwidth have per unit costs

Feasible choices of bandwidth and buffer per source

Optimal choices of bandwidth and buffer per source

Future Tasks

Connections to other NMS projects?

• Build connections between characterizations of traffic flows, QoS requests, and network resource availability

Traffic char.:

QoS Char.:

Network Res. Arch.:

AT&T/Renesys?

Berkeley

Rice?

UIUC?

U. Maryland?

Purdue?